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ABSTRACT 
One approach to the generation of natural-sounding syn- 

thesized speech waveforms is to select and concatenate units 
from a large speech database. Units (in the current work, 
phonemes) are selected to produce a natural realisation of 
a target phoneme sequence predicted from text which is 
annotated with prosodic and phonetic context information. 
We propose that the units in a synthesis database can be 
considered as a state transition network in which the state 
occupancy cost is the distance between a database unit and 
a target, and the transition cost is an estimate of the quality 
of concatenation of two consecutive units. This framework 
has many similarities to HMM-based speech recognition. A 
pruned Viterbi search is used to select the best units for 
synthesis from the database. This approach to waveform 
synthesis permits training from natural speech: two meth- 
ods for training from speech are presented which provide 
weights which produce more natural speech than can be 
obtained by hand-tuning. 

1. INTRODUCTION 
Synthesized speech can be produced by concatenating 
the waveforms of units selected from large, single-speaker 
speech databases. The primary motivation for the use 
of large databases is that with a large number of units 
available with varied prosodic and spectral characteristics 
it should be possible to synthesize more natural-sounding 
speech than can be produced with a small set of controlled 
units (e.g. diphones) [I]. 

In previous work at this laboratory on the ATR v-Talk 
Japanese speech synthesis system, the selection of units 
from a large database was based on minimising acoustic 
distortions between selected units and the target spectrum 
[2,3]. The research presented in this paper has been carried 
out within the CHATR speech synthesis system which also 
selects units from large, single-speaker databases but which 
extends the ATR v-Talk principle to take into account both 
the prosodic and phonetic appropriateness of units. The 
primary goal of introducing prosodic information to the se- 
lection criteria is to reduce the extent of signal processing 
required to correct the prosodic characteristics of the units 
(e.g. using PSOLA, [4]) because increased prosodic mod- 
ifications tend to reduce the quality of the speech output 

The unit selection procedure of CHATR has also proved 
PI- 

to be flexible. CHATR has been usecl to synthesize speech 
from a wide range of databases including male and female 
speakers, Japanese and English, and isolated words and 
continuous read speech [5]. These dlatabases have varied 
in size from 10 minutes to 150 minutes. 

This most important issue to be solved to make this con- 
catenative synthesis approach effective is the selection of 
appropriate units from the database. This paper advances 
previous research on CHATR by characterising the selection 
procedure as Viterbi decoding of a state transition network 
consisting of all units in a synthesis clatabase, as described 
in Section 2. This new view of the synthesis database per- 
mits automated training using natural speech. In Section 3, 
two novel methods are presented for training the cost func- 
tions which control unit selection. In Section 4, results from 
subjective assessment of the synthetic speech are presented 
and discussed. 

2. UNIT SELECTION 

The input to CHATR is typically text, though this may be 
augmented with structural and discourse information. The 
first stages of synthesis transform this input into a target 
specification (or simply target). The target for an utter- 
ance defines the string of phonemes required to synthesize 
the text, and is annotated with prosodic features (pitch, 
duration and power) which specify the desired speech out- 
put in more detail. This paper is not concerned with the 
procedures required to produce the target specification, but 
instead focuses on the selection of aplpropriate units from a 
database to synthesize the target. 

Unit selection in CHATR is based on the two cost func- 
tions shown in Figure 1 [5]. The target cost, Ct(at, t i ) ,  is an 
estimate of the difference between a database unit, ut, and 
the target, t i ,  which it is supposed to represent. The con- 
catenation cost, Cc(u,- l ,  ut),  is an estimate of the quality of 

Figure 1. Unit Selection Costs 
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Figure 2. Phoneme Network for a Database 

a join between consecutive units (%,-I and at). Section 2.1 
describes how the database units can be treated as a state 
transition network which is decoded by these costs. Sec- 
tion 2.2 descibes how the costs are calculated and Section 3 
describes the training of the costs. 

2.1. 
Given the target specification, the sequence t; = (tl,  ..., tn), 
we need to select the set of units, U ?  = ( ~ 1 ,  ..., un),  which 
are closest to the target. By selecting units close to the 
target we can minimise the extent of the signal process- 
ing required to produce prosodic characteristics and thus 
minimise distortion of the natural waveforms. The speech 
database containing the candidate units can be viewed as 
a state transition network with each unit in the database 
represented by a separate state. The state occupancy cost 
is given by the target cost, and the state transition cost 
is given by the concatenation cost. Because any unit can 
potentially be followed by any other, the network is fully 
connected. A target phoneme is always synthesised by a 
database unit with the same phonemic identity. 

Figure 2 illustrates a speech database as a state transi- 
tion network (showing the units required to produce the 
word “synthesize”). The states (boxes) represent all the 
phonemes in the database (organised according to phone- 
mic identity) and the transitions (lines) are all possible con- 
catenation sequences. When synthesizing the word “synthe- 
size”, we have a target specification t; with the phonemes 
/s-Ln-th-e-s-ai-z/ and with each target having a desired 
pitch, duration and power. The task of waveform synthesis 
is to find the path through the state transition network, i.e. 
the sequence of database units, with the minimum cost. 

It is worth pointing out that this treatment of a synthe- 
sis database has many similarities to HMM-based speech 
recognition systems [6]. In HMM terminology, the state 
transition network of database units is an ergodic first-order 
HMM in which the observation sequence is the target spec- 
ification, and the best sequence of selected units is the hid- 

A Database as a State Transition Network 

den path. The important distinction is that Markov models 
are probabilistic, whereas the current work uses cost func- 
tions. 

2.2. 

The selection of good units for synthesis requires an appro- 
priate definition of the target and concatenation costs and 
effective training of these costs. As was described above, 
each target phoneme has a target pitch, power and dura- 
tion. From the sequence of targets we can also determine 
the prosodic characteristics and the phonetic identity of the 
preceding and following phonemes. Similarly, given pho- 
netic labelling of the synthesis database (by forced align- 
ment or hand-labelling), we can use standard signal process- 
ing techniques to obtain identical information about each 
phoneme in the database. Thus, each target phoneme and 
each candidate in the synthesis database is characterised by 
a multidimensional feature vector. 

Special treatment is required for the phonetic context as 
it is by nature a discrete (non-numeric) feature. The fol- 
lowing distinctive features are used to characterise the pre- 
ceding and following phonemes: vowel vs. consonant, voic- 
ing, consonant type, point of articulation, and vowel height, 
length, and rounding. When comparing the distinctive fea- 
tures of two phonemes a comparison function is used: zero 
if they are the same or one if they differ. 

The target cost is calculated as the weighted sum of the 
differences between the elements of the target and candidate 
feature vectors: these differences are the p target sub-costs, 
Cj(tt, U,) (j = 1, ...,p). In the current implementations p 
varies between 20 and 30. The target cost, given weights 
wj for the sub-costs, is calculated as follows: 

Cost Functions and Unit Selection 

P 

The concatenation cost, CC(ui-1, U ; ) ,  is also deter- 
mined by the weighted sum of q concatenation sub-costs, 
C;(U;-~, U ; )  (j = 1, ..., q) .  The sub-costs can be determined 
from the unit characterisations of U;-1 and U ;  (as with the 
target cost), but may additionally be derived from signal 
processing of the units. Three sub-costs were used in the 
current work (i.e. q = 3): cepstral distance at the point 
of concatenation and the absolute differences in log power 
and pitch. The concatenation cost, given weights w;, is 
calculated as follows: 

a 

j= 1 

As a special case, if zi-1 and U ;  are consecutive units in the 
synthesis database, then their concatenation is natural and 
therefore has a cost of zero. This condition encourages the 
selection of multiple consecutive phonemes from the synthe- 
sis database, referred to as non-uniform units in the ATR 
v-Talk system. 

The total cost for a sequence of n units (i.e. a path 
through the state transition network) is the sum of the tar- 
get and concatenation costs: 
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n n 

i = l  i=2 

Ce(S,  211) + Cc(un, S)  [31 

where S denotes silence, and Cc(S,  u1) and CC(un, S) define 
the start and end conditions given by the concatenation of 
the first and last units to silence. Expanding Equation 3 to 
include the sub-costs we obtain the following: 

The unit selection procedure is the task of determining the 
set of units so that the total cost defined by Equation 4 
is minimised: 

Optimal unit selection can be performed with a Viterbi 
search. However, to obtain near real-time synthesis on large 
speech databases, containing tens of thousands of units, the 
search space must be pruned. This has been implemented 
by multiple pruning steps. Initially, units with phonetic 
contexts similar to the target are identified. Next, the re- 
maining units are pruned with the target cost and finally 
with the concatenation cost [5]. With a beam width of 10- 
20 units, the search can be performed in near real-time on 
a database with around 100,000 units (on a Sun SPARC- 
Station 20). Synthesis is faster than real time for smaller 
databases (less than 50,000 units). Pruning appears to have 
little effect on the output quality. 

3. TRAINING THE COST FUNCTIONS 
The most complex issue to be addressed is the training of 
the weights of the cost functions (wi and w;). This section 
describes two novel approaches to determining the weights. 
The first approach, weight space search can be characterised 
as a limited search of the weight space. The second ap- 
proach, regression training involves exhaustive comparison 
of the units in the database and multiple linear regression. 

Both training methods use targets from natural utter- 
ances held out from the synthesis database. The role of 
training is to determine weights which minimise the dif- 
ference between the natural waveform and the waveform 
output of the synthesizer given the target specification of 
the natural utterance. The target specification for a nat- 
ural utterance is accurately specified by the set of feature 
vectors of the database units which make up that utterance. 

An objective distance measure is used to determine the 
difference between synthesized and natural utterances being 
withheld from the database. The objective distance mea- 
sure should reflect as much as possible the perceptual sim- 
ilarity of the utterances. Currently, the cepstral distance 
between the waveforms is used as the objective distance 
measure. 

3.1. Weight Space Search 
Given a set of weights we determine the best set of units 
from the database using Equation 5 (i.e. the Viterbi 
search), synthesize the waveform, and determine its dis- 
tance from the natural waveform using the objective dis- 
tance function. This process is repeated for a range of 
weight sets and for multiple utterances. The best weight 
set is chosen as the one that performs most consistently 
across the utterances. 

In the current work 3-5 possible weight values were tested 
for the prosodic and phonetic context features. All possi- 
ble combinations of these values weire tested on at  least 10 
training utterances requiring the synthesis and comparison 
of possibly 100,000’s of waveforms. 

This training method has some important limitations. 
Most importantly, the computational requirements grow ex- 
pontentially with the number of weights being trained and 
with the number of values used for each weight. This prob- 
lem has been reduced by training t8he weights in multiple 
passes, but still requires 150+ houris of training time for a 
speech database of 40,000 units (approximately 1 hour of 
speech) on a Sun SPARCStation 20. 

3.2. Regression Training 
Regression determines the weights for the concatenation 
cost and the weights for the target cost separately. A previ- 
ous experiment by the authors studied the perception of the 
concatenation of speech segments in Japanese [7]. Analysis 
of the concatenation of a range of units showed that a linear 
combination of cepstral distance and difference in power at 
the point of concatenation is a reasonable predictor of the 
perceptual quality of a joint. The results from this experi- 
ment determined the weights, w;, of the concatenation cost. 
As mentioned in Section 2.2., the difference in pitch at the 
point of concatenation was also included in the concatena- 
tion cost. The earlier experiment controlled the influence 
of pitch, so the weight for pitch diflerence was determined 
by hand-tuning. 

The weights for the target cost were obtained using the 
objective distance function and multiple linear regression. 
The training process can be applied1 to obtain a phoneme- 
dependent weight set (different weiights, w j ,  for selecting 
different phonemes), and can also generate different weights 
for sets of phonemes (e.g. all nasalis) or all phonemes to- 
gether. The steps in regression training are as follows: 

1. For each example unit in the synthesis database from 
the phoneme set currently being; trained, perform steps 
a-d. 
(a) Treat the example unit as EL target unit. 
(b) Calculate the acoustic difference between this tar- 

get and all other instances of the same phoneme in 
the synthesis database using the objective distance 
function. 

(c) Identify the set of n-best matches to this target 
(n=20). 

(d) Determine the target sub-costs C i ( t ,  ut) for the tar- 
get unit and the n-best matches. 

2. Collect the objective distances and target sub-costs 
across all the targets and all the n-best matches. 
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3. Use linear regression to predict the objective distance 
by a linear weighting of the t target sub-costs. Use the 
weights determined by linear regression as the weights 
for the target sub-costs, w i ,  for current phoneme set. 

4. Repeat steps 1-3 for each phoneme set. 
The goal of this training algorithm is to determine weights 
for the target sub-costs which select units that are close to 
those which would be selected if the objective cost function 
could be used directly in unit selection. In this way, the 
process takes advantage of the waveforms of the natural 
speech which are available in the synthesis database. 

The regression training method has many advantages 
over the weight space search. In particular, it is able to 
efficiently generate separate weights for different phoneme 
classes for which the influence of prosodic and phonetic- 
context factors may be different, and it can train many 
more weights (training time scales linearly with the num- 
ber of sub-costs, rather than exponentially as is the case for 
weight space search). Regression training is also computa- 
tionally more efficient; training time is reduced by as much 
as one hundred times. Typical training times are between 1 
and 10 hours, depending on the size of the database. More- 
over, training time can be reduced to 5 to 30 minutes if the 
acoustic distances (see step Ib) are pre-calculated permit- 
ting rapid evaluation of different sub-costs. 

4. DISCUSSION 
Both training methods have been applied to a range of 
synthesis databases including Japanese and English, and 
male and female speech. Synthesized speech produced from 
weights of either training method is consistently better than 
that produced with hand-tuned weights. However, hand- 
tuning of global unit selection parameters can improve the 
quality of synthesis with automatically trained weights. For 
example, an overall increase or decrease in the concatena- 
tion weights can be used to trade-off between prosodic cor- 
rectness and the smoothness of concatenation of units. This 
trade-off becomes less important as the size of the synthesis 
database increases. 

Several tests have been carried out to compare the syn- 
thesised speech produced by the two training methods de- 
scribed in this paper. The results show a consistent but 
small preference for weights obtained by regression train- 
ing. We had expected regression training to provide more 
substantial improvements because of its greater sophistica- 
tion and because i t  can train separate weights for different 
phoneme classes. There is no clear explanation for this re- 
sult. 

Nevertheless, regression training is now the preferred 
training method because of its substantidy lower compu- 
tational requirements and greater flexibility. A number of 
areas of regression training are currently under considera- 
tion for improvement. Modifications to the objective dis- 
tance function to include power and pitch (as additions to 
the cepstral parameters) appear promising. Enhancement 
of the target sub-costs is another avenue for improving unit 
selection, in particular through extension of the statistical 
framework of training to permit the inclusion of discrete pa- 
rameters into the feature vectors. Additionally, the statis- 
tical framework may be improved by using step-wise linear 

regression or other robust techniques. Finally, we are inves- 
tigating extensions of regression training to automatically 
prune synthesis databases (i.e. the removal of poor quality 
or redundant units from the synthesis database). 

5. CONCLUSIONS 
This paper has presented a new view of a synthesis database 
for use in unit concatenative speech synthesis. The units 
in a synthesis database can be treated as states in a state 
transition network with the state occupancy costs given by 
the target cost, and the state transition costs given by the 
concatenation cost which is an estimate of the quality of 
concatenation of pairs of units. Given the two costs, the 
network can be decoded using a pruned Viterbi algorithm. 
Two methods have been presented for training the target 
and concatenation costs, weight space search and regrew 
sion training. Both methods use natural speech to train the 
weights used in selection costs and provide weights which 
produce better quality synthesis than hand-tuned weights. 
Although there is little difference in the quality of out- 
put using the two training methods, the regression training 
method is more effective because of its substantially lower 
computational requirements and greater flexibility. 

ACKNOWLEDGEMENTS 
The authors wish to thank Dr. Yasuhiro Yamazaki for his 
support. 

REFERENCES 
N. Campbell and A. Black. Prosody and the selection 
of source units for concatenative synthesis. In J. van 
Santen, R. Sproat, J. Olive, and J. Hirschberg, editors, 
Progress in Speech Synthesis. Springer Verlag, 1995. 
Y. Sagisaka, N. Kaiki, N. Iwahashi, and K. Mimura. 
ATR v-talk speech synthesis system. In Proc. 1992 Intl. 
Conf. on Spoken Language Processing, pages 483-486, 
Banff, Canada, 1992. 
N. Iwahashi, N. Kaiki, and Y. Sagisaka. Concatena- 
tive speech synthesis by minimum distortion criteria. In 
ICASSP '92, pages 11-65-68, 1992. 
E. Moulines and Charpentier F. Pitch-synchronous 
waveform processing techniques for text-to-speech 
synthesis using diphones. Speech Communication, 
9(5/6):453467, 1990. 
A. Black and N. Campbell. Optimising selection of 
units from speech databases for concatenative synthesis. 
In EUROSPEECH '95, pages 581-584, Madrid, Spain, 
1995. 
L. R. Rabiner. A tutorial on hidden Markov models 
and selected applications in speech recognition. IEEE 
Proceedings, 77 No 2:257-285, 1989. 
A.J. Hunt and A.W. Black. An investigation of the 
quality of concatenation of speech waveforms. Technical 
report, ATR Interpreting Telecommunications Research 
Laboratories: TR-IT-0137, 1995. 

376 


